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ABSTRACT: Ingestible electronic systems that are capable of
embedded sensing, particularly within the gastrointestinal (GI)
tract and its accessory organs, have the potential to screen for
diseases that are difficult if not impossible to detect at an early
stage using other means. Furthermore, these devices have the
potential to (1) reduce labor and facility costs for a variety of
procedures, (2) promote research for discovering new biomarker
targets for associated pathologies, (3) promote the development of
autonomous or semiautonomous diagnostic aids for consumers,
and (4) provide a foundation for epithelially targeted therapeutic
interventions. These technological advances have the potential to
make disease surveillance and treatment far more effective for a
variety of conditions, allowing patients to lead longer and more
productive lives. This review will examine the conventional techniques, as well as ingestible sensors and sensing systems that are
currently under development for use in disease screening and diagnosis for GI disorders. Design considerations, fabrication, and
applications will be discussed.
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■ THE NEED FOR IMPROVED HEALTH SCREENINGS

The United States spends far more on healthcare than any
other industrialized nation with little, if any, measurable benefit
in health outcomes (as compared to peer nations).1 The
reasons behind this include (1) a lack of focus on prevention of
illness and (2) the more prevalent use of higher cost healthcare
technologies, such as magnetic resonance imaging (MRI), as
compared to other industrialized nations.1 A focus on
prevention and disease intervention at early stages could
therefore lead to better health outcomes with decreased costs
for society as a whole. The population-based screening
techniques applied for colon cancer screenings (i.e., colono-
scopy) are an excellent example, leading to as much as a 67%
reduction in disease incidence (according to one study).2,3

As will be discussed throughout this review, there are many
opportunities that can be addressed by ingestible capsule
systems including gastrointestinal (GI) tract disease screening,
local delivery of drugs to the GI tract, easier administration of
systemic therapies, and possibly even screening for diseases in
other abdominal organs. A great deal of work is needed in the
development of both sensors and associated systems to make

these technologies a reality. These technologies truly represent
a new frontier in ambulatory care and have the potential to
reduce both the burden to patients with chronic diseases that
require periodic surveillance as well as the cost to the
healthcare system. As noted, there are a myriad of clinical
problems that can benefit from swallowable sensors and
sensing systems. An analysis of the ingestible capsule market
indicates significant growth in the future, due to both the
advanced capabilities being achieved with newly developed
technologies for diagnosis and monitoring along with the
increasing occurrence of GI conditions. A recent report
specifies an expected $627.1 M increase and a compound
annual growth rate of approximately 21.2% during 2015−
2020.4 The report discusses approaches including capsule
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endoscopes and GI monitoring technologies; both are further
elaborated in this review.

■ OPPORTUNITIES FOR INGESTIBLE DEVICES
Early Diagnosis and Screening for Disease. Secretions

of the gut consist primarily of digestive enzymes and the means
for ensuring their proper function, such as ions to maintain
appropriate pH balance (i.e., HCO3

− from the pancreas); other
ions (i.e., H+, K+, Cl−, and Na+) also ensure proper nutrient
transport across the GI tract wall. Additional contents include
mucus, for lubrication and protection, and bile, which
emulsifies lipids aiding in absorption. These compounds
(and proteins) are one class of potential biomarkers of GI
function.
Cancer screening and early detection within the GI tract and

its accessory organs is of particular interest. In addition to the
aforementioned colon cancer screening, pancreatic cancer is a
disease that would benefit from GI-targeted, population-based
screening. Treatment is possible if found early; this is often not
possible, however, as the pancreas lies behind most of the
abdominal contents in the retroperitoneum, where a tumor can
grow for long periods of time without causing symptoms.5

Currently, the only way to effectively screen for pancreatic
cancer is through imaging (i.e., MRI, computed tomography
(CT), and endoscopic ultrasound (EUS)). Using these
imaging techniques for screening on a population basis
would be prohibitively expensive, especially given that
pancreatic cancer is relatively rare. Pancreatic cancer is
therefore a prime example of a disease process where the
development of a cost-effective swallowable sensor or capsule
for screening could be beneficial. There is not currently a cost-
effective screening method, but if detected early, the prognosis
is much more favorable.
Disease Surveillance. In addition to screening or early

detection of difficult-to-diagnose cancers, ingestible technolo-
gies have potential applications in chronic disease surveillance.
Three specific examples of chronic diseases of the GI tract that
require periodic surveillance are Barrett’s esophagus, Crohn’s
disease, and ulcerative colitis (UC), of which the latter two are
often grouped together as inflammatory bowel disease (IBD).
Both IBD and Barrett’s esophagus are inflammatory conditions
where tissue changes over time can eventually lead to cancer
development. IBD comprises a spectrum of diseases that can
affect the entire GI tract. Specifically, Crohn’s disease can affect
the gut anywhere from the mouth to the anus, usually in a
noncontinuous fashion, while UC only affects the colon, with
the disease progressing up the GI tract from the rectum in a
continuous fashion.6 There is a degree of overlap between both
disease processes, specifically that they are multifactorial, as
each involves interaction of the bowel wall, bacteria within the
bowel lumen, and the immune system.6 Barrett’s esophagus is
due to repeated exposure of the esophagus to stomach acid and
is associated with gastresophageal reflux disease (GERD).7

GERD is a chronic condition where, for several different
reasons, stomach acid is able to exit the stomach and enter the
esophagus. This irritates esophageal tissue, leading to what is
commonly known as heartburn. If the condition persists over
time, it can lead to histological changes in the esophageal
tissue, such as replacement of normal esophageal cells with
cells that resemble those in the intestine, eventually leading to
abnormal cell growth (dysplasia) and cancer.7−9

In both Barrett’s esophagus and IBD, repeated screening is
needed to detect precancerous lesions so that they can be

treated or, if the extent of the lesions is great enough, the
esophagus or colon can be removed to prevent cancer
development.7,10 For example, the recommendation for
Barrett’s esophagus is to perform two endoscopies with biopsy
within one year of the initial diagnosis and then repeat the
screening endoscopy every one to three years if no dysplasia is
found. If dysplasia is present, particularly high grade,
screenings must be repeated as often as every 3 months.7

There is interest in using an endoscopy capsule for screening
Barrett’s esophagus patients, though there are concerns about
the cost of the endoscopy capsules.7 A cost-effective capsule
screening technology for Barrett’s esophagus could help aid in
more timely diagnosis as well as improved quality of life for
patients, who would no longer need anesthesia for repeated
screening.
In UC and Crohn’s colitis, a colonoscopy to screen for

cancer is recommended to be performed within 8−10 years of
initial diagnosis. Further screenings are performed every 1−2
years depending on the disease severity and even more often
(as frequently as 3 month intervals) if dysplasia is found.10

Additional requirements may include tissue biopsy for
monitoring dysplasia (i.e., presence of precancerous cells).6 A
screening option bypassing such requirements that could be
performed in ones’ home or in an outpatient setting could
greatly reduce the burden to patients with these diseases, as
well as expected facility and labor costs. Ingestible sensors
could find numerous applications in the repeated monitoring
that is needed for these patients. In both, real-time surveillance
of treatment effectiveness as well as fewer requirements for
anesthesia during screening procedures have the potential to
greatly improve patient quality of life.

Novel Insights into Disease Biology and Patho-
genesis. The unknown (or not fully understood) etiology of
IBD highlights another potential application area for ingestible
systems: that of trying to understand the complex system
biology that underlies disease. For instance, understanding the
interaction between the gut microbiome and inflammation
may offer insights into the pathogenesis of IBD. More
specifically, mapping areas of inflammation within the gut to
changes in pro-inflammatory markers released by commensal
bacteria could be one potential direction in understanding how
Crohn’s disease or other associated IBD pathologies are related
to gut microbiome activity. Furthermore, the ability to map
these inflammatory changes could improve treatment strategies
and facilitate more frequent monitoring of IBD patients
without the burden of repeated endoscopies.11,12 A review on
IBD and various methods to address its further challenges can
be found in ref 13.
Another example of a potential clinical application for

swallowable and ingestible diagnostics is GI motility and
pressure monitoring. These parameters are of interest in
several different disease processes, including the diagnosis of
constipation and gastroparesis.14−18 Constipation is defined by
the inability to move ones’ bowels or incomplete emptying of
the bowels, while gastroparesis is a condition where the
contents do not move through the stomach properly, leading
to discomfort, indigestion, and poor nutrition.6 Gastroparesis
in particular is likely to become more prevalent because it is
associated with diabetes, the incidence of which is also growing
due to the obesity epidemic.19−24 Despite the high prevalence
of these disorders, there are no simple and inexpensive systems
to render the diagnosis. More importantly, knowledge of the
underlying pathophysiology in most of these disorders has
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been stymied by the lack of technologies that can more directly
measure nerve and muscle function rather than rely on
surrogate markers such as transit time. These gaps in our
knowledge have proven to be a major obstacle in the
development of rational pharmacological treatments.
Overall, it is clear that there are many disease processes,

chronic disease surveillance applications, and population-based
screening needs that require lower-cost and minimally invasive
solutions. Imaging techniques and conventional endoscopy are
unable to meet all demands of these applications. A major
advantage of swallowable sensors and sensing systems is their
ability to reach areas of the GI tract not easily accessible by
traditional endoscopy. Improving access to these regions will
inherently broaden the ability to screen for other conditions as
well as other organs in the body that are adjacent to or drain
secretions into the GI tract (i.e., the pancreas, liver, and
spleen). As a result, ingestible devices could provide
opportunities for accessing information from secretions of
these other organs, offering utility for diagnostic/screening
purposes.
This review will cover (1) the conventionally used

endoscopic techniques, (2) commercially available ingestible
capsule products, and (3) ingestible sensors and sensing
systems that are currently under development to meet the
stringent demands of this application.

■ EXAMPLES OF CONVENTIONAL GI
INTERVENTIONS

A common conventional GI intervention technique, as
mentioned earlier, is endoscopy, where a camera attached to
a flexible fiber-optic tube is inserted into the GI tract to allow
for interior examination of the organ. The location of insertion
is dependent on the portion of the tract that warrants
inspection. For upper GI endoscopy, the tube is inserted into
the mouth, whereas a colonoscopy requires insertion through
the anus. Upper GI endoscopy is typically used to examine the
esophagus, stomach, and duodenum, while colonoscopy is
used to examine the colon (the colon is typically ∼1 m long in
most patients). Both techniques can be augmented with
balloon endoscopy where balloons can be inflated, fixing the
endoscope in the bowel and allowing the bowel to be drawn
toward and pleated over the endoscope.25 This can extend
endoscopy into examination of portions of the small bowel,
though these methods are complex and time-consuming.
Endoscopy generally requires some form of sedation, limiting
its use to hospitals or clinics with the appropriate expertise and
patient monitoring equipment. Figure 1 contains a diagram of
basic GI anatomy which can be used as a reference for the
following discussion.
Endoscopy is used for a variety of purposes, such as

detecting bleeding, inflammation, and neoplasms.27 The most
attractive features of endoscopy are its ability to intervene
within the GI tract with minimal pain, quick post-procedure
recovery, and a low risk of mortality. Endoscopy is often used
for disease screening and the treatment of inflammatory
conditions and precancerous lesions, including the detection
and removal of polyps in the colon or the surveillance and
treatment of Barrett’s esophagus.28 Endoscopes are designed
with ports that allow the insertion of instruments through the
scope for removal of biopsy specimens or treatment of
identified lesions. EUS is an additional adjunct to endoscopy
which can be particularly useful for further staging and
treatment planning once a lesion has been found, as well as for

investigating the extent of tumor invasion or lymph node
involvement.29,30

Endoscopy is often combined with other imaging and
diagnostic methods to expand its utility and access to more
areas of the body. For example, in endoscopic retrograde
cholangiopancreatography (ERCP), the sphincter of Oddi
(where the common bile duct intersects the duodenum,
allowing products from the liver and pancreas to be injected
into the GI tract) is cannulated using an endoscope, allowing
for the injection of radiocontrast into the common bile duct or
pancreatic duct; fluoroscopy is then used as an additional
means to look for abnormalities.6 ERCP is useful for detecting
choledocholithiasis (gallstones) or strictures, whereas for
pancreatic diseases ERCP is capable of diagnosing chronic
pancreatitis, pancreatic duct leakage, pseudocysts (fluid
collection), or even later stage pancreatic cancer.31 In most
cases, newer imaging methods such as magnetic resonance
cholangiopancreatography (MRCP) are replacing ERCP for
diagnostic purposes, and ERCP is increasingly becoming an
exclusively therapeutic procedure.31−33

As with any other method, endoscopy has limitations. Most
notably, it can only readily image several feet into the GI tract,
while most humans have ∼7.5 m (25 feet) feet of intestine.34

Although enteroscopy, a technique using a very long scope
with ancillary features to advance the instrument to greater
lengths, is available, inspection is typically not thorough and
the procedure is time-consuming and requires a high degree of
skill. Capsule endoscopes, such as the PillCam (Medtronic,
Minneapolis MN), are tools that have been developed to
address these limitations. Camera-based imaging in pills has
been used for a variety of purposes,35−38 but principally to
detect bleeding or neoplastic lesions in the small intestine that
cannot be readily reached using traditional endoscopy. Capsule

Figure 1. Relevant anatomy for GI monitoring (Reprinted with
permission from ref 26. Copyright 2017 Jotscroll.com.) with
indications of accessible GI regions for different methods.26
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endoscopy devices have been developed for imaging the small
intestine and colon but are most commonly applied to the
small intestine.39,40 The location of the capsule in the GI tract
can be determined by several methods, including GI transit
time, combining information from pH and pressure sensors,
identifying unique morphology of different GI regions,
magnetic methods, and radiographic tracking (i.e., using X-
rays).41 A thorough review of capsule endoscopy and its uses
can be found in ref 42.
One final commonly encountered application of the current

minimally invasive GI intervention methods is esophageal pH
and motility monitoring.6 These studies are performed in
patients suffering from GERD or, in the latter case, who are
having trouble swallowing. Monitoring of esophageal con-
traction is performed using a catheter containing pressure
sensors inserted into the esophagus to measure the pressure
waveform of the esophageal contraction.6 Monitoring pH can
be accomplished using a catheter that is inserted and stays in
place (in similar fashion to monitoring esophageal contrac-
tions) as well as using an endoscopically placed wireless-based
capsule that sloughs off spontaneously over the course of the
next few days.6

Currently used methods are effective but are not without
risk. The most feared, although uncommon, major complica-
tions of both upper and lower GI endoscopy are bleeding and
perforation. Interestingly, the most common complication of
such procedures is a cardiopulmonary event (such as an
arrythmia or a heart attack), often due to the sedation that is
required to perform the procedure.43,44 Furthermore, endos-
copy is labor-intensive, requires the use of advanced facilities,
and involves patient sedation. This can be particularly
burdensome when repeated surveillance is required, for
example, in Barrett’s esophagus7 or UC.45,46 In addition,
improved techniques are needed to locate neoplastic lesions or
other abnormalities within the small intestine that are difficult
to reach using traditional endoscopy.47 Capsule-based endos-
copy technologies address some of these shortcomings.
As will be covered below, low-cost, real-time sensors and

sensing systems need to be specifically tailored to a disease
process and a patient population to be fully effective. Instead of
a one-size-fits-all approach, different methods must be
developed for specific applications. Several sensing devices
are commercially available, while others are under develop-
ment. Both will be covered in the sections below, as well as
microsystem and biosensor design principles underlying their
development.

■ DESIGN CONSIDERATIONS FOR INGESTIBLE
SENSORS AND SENSING SYSTEMS

There are many requirements to consider in designing
ingestible systems, and they accumulate with increasing
complexity. Several of them include size, power consumption,
sampling rate, packaging, data storage/transmission, and
materials compatibility.48 The sensor or sensing system must
be small enough to be swallowed and capable of passing
through the GI tract without causing obstruction.39,40 The
swallowability of the capsule likely may not only hinge on its
size but also on other factors such as its texture or shape. The
materials comprising the capsule system are a key consid-
eration for both functionality and biocompatibility. A review of
materials for ingestible electromechanical systems, which
covers a variety of areas, can be found in ref 49. A key
specification in the design is the overall size of the device. As

mentioned in Figure 2, some of the commercially available
swallowable systems range in length from 24.5 to 28 mm and
in diameter from 10.8 to 13 mm.

Power management and power consumption are key
considerations given the stringent size requirements for capsule
sensing systems, as well as the limited availability of small
batteries that can produce large amounts of current for
sustained periods of time. A review of power sources for
implantable systems can be found in ref 50. In the research
setting, a variety of different batteries have been utilized.
Lithium ion or lithium polymer coin cells are often used when
higher currents are needed.51 Energy harvesting is an
additional means that is under investigation for powering
ingestible capsule systems. One example of a developed power
harvesting scheme is generating current from stomach acid
using a zinc−copper galvanic cell.52 Others are also possible,
such as those requiring motion from biomechanical en-
ergy.53−55 In addition, the intestines are a major site of diverse
chemical reactions involved in the digestion of food, which can
also serve as a source of harvestable energy for generating
electrical currents.
Sensors and actuators are the main functional components

of these ingestible systems, as they perform measurements and
tasks to address underlying symptoms of disease. Ingestible
sensors can be designed to measure specific biomarkers (e.g.,
gas,56,57 blood,58−60 molecules61,62) or physiological con-
ditions (e.g., temperature, pH, pressure63) or perform location
tracking using O2 levels

56 or magnetic sensing.64 These sensors
all function as transducers, converting molecular, mechanical,
electromagnetic, or thermal energy (among others) into

Figure 2. Images of commercial, off-the-shelf swallowable sensing
systems: (a) PillCam (Medtronic, Minneapolis MN) (Reprinted with
permission from ref 97. Copyright 2020 Medtronic).97 (b) The
Proteus Digital Health Feedback System (Proteus Digital Health,
Redwood City CA) (Reprinted with permission from ref 71.
Copyright 2009 IEEE).71 (c) The IntelliSite Capsule (Casper
Associates, Sanford NC) (Reprinted with permission from ref 98.
Copyright 2016 Scintipharma/Casper Associates).98 (d) Wireless
Motility/pH Capsule ((Medtronic, Minneapolis MN), (Reprinted
with permission from ref 99. Copyright 2011 Gastroenterology &
Hepatology). (e) Atmo Gas Capsule (Atmo BioSciences, Box Hill,
Victoria, Australia) (Reprinted with permission from ref 100.
Copyright 2018 Atmo Biosciences).100 For a size comparison, the
commercially available endoscopic capsules for small bowel imaging
such as the PillCam (shown above) range in length from 24.5 to 28
mm and in diameter from 10.8 to 13 mm.39
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electrical currents for integration with downstream electronics.
pH sensors are commonly used in ingestible systems, taking
advantage of the distinct pH gradient along the GI tract for
health monitoring or region-targeted actuation. ISFETs (ion
sensitive field effect transistors) are an alternative to glass
electrodes, which measure the effect of H+ ions on current
through a p/n channel.65 The response of these transducers
can be tuned for sensitivity and specificity to a given input by
engineering the sensor interface.
Molecular biosensors are also useful for detecting the

presence of specific compounds within the GI tract. Biosensor
design generally follows a common scheme, in which a
biorecognition element (e.g., receptor, selective membrane)
specifically, interacts with a biological analyte of interest (e.g.,
gas, molecular biomarkers). A transduction element (e.g., some
form of transducer) then detects the analyte through
interaction with the biorecognition element, creating an
electrical signal for data processing, quantification, and
communication. A range of different micro- and nanoscale
biosensors and transducers have been developed for a variety
of applications.66 The selection of transducer will depend on
the analyte of interest and the desired transduction
mechanism. Basic transducer types include gravimetric
(mass-sensitive), capacitive, electrochemical, impedimetric,
resistive/conductive, field-effect, and optical among others.66,67

Different types of analytes are more readily detectible using
some types of sensors but not others. For example, compounds
that undergo oxidation/reduction reactions (e.g., ascorbic acid,
biomarker of oxidative stress68,69) are readily detectable by
electrochemical methods. Alternatively, analytes that induce a
large change in dielectric constant at the surface of a sensor
(e.g., an enzyme dissolving a specific coating) may be readily
detectable by capacitive sensors. Often, an analyte can be
detected by more than one method and the selection of
transducer in this case will have to be considered alongside the
circuit and system design. For example, a system that is
battery-powered where highly specific analyte detection is
required may be best-equipped with an electrochemical sensor,
while a capacitive transducer may be more readily incorporated
into a passive system.
Microfabricated sensors and actuators are of particular

interest because of their small size, low power consumption,
and potential for batch fabrication, which reduces the per-unit
cost. An overview of microfabrication methods can be found in
several texts including refs 66 and 70. In addition, micro-
fabricated sensors that are made using materials and tooling
from the semiconductor electronics industry have the potential
for integration with complementary metal oxide semiconduc-
tor (CMOS) electronics, reducing the needed tooling to
fabricate these types of sensors. One commercialized sensor
has already taken advantage of integration with CMOS
electronics.71 Several examples of microfabricated sensors
and actuators for ingestible systems are discussed below.
The sensor types and circuitry to run the sensor is, in many

ways, the most important consideration when designing an
ingestible sensing system. The discussion of the electrical
interface circuity for the sensor is tightly linked to the
discussion of the sensor selection, since different circuits are
needed depending on the employed sensor. For example, an
electrochemical sensor requires a potentiostat for its readout,
which is a circuit that applies specific voltages and measures
the resulting current, while an impedimetric sensor requires a
circuit which is able to excite the sensor with an electrical

signal at a specific frequency and then measure the resulting
voltage signal. The chosen back-end electronics must be able
to interface with the sensor circuit. Some circuits produce a
simple analog output, which can, for example, be read using an
analog-to-digital converter on a microcontroller, while other
types of readout circuitry (particularly commercially available
integrated circuits (ICs)) may require a specific type of serial
interface (i.e., serial peripheral interface or a universal
asynchronous receiver transmitter).
Data sampling and storage are a major consideration for any

sensing system. Trade-offs to consider in ingestible systems
include whether to use an active (i.e., internally powered
system that can measure, receive, and transmit data) or a
passive system (i.e., a passive LC resonant based system),
whether to store the data locally or transmit it later, and the
sampling rate requirements (i.e., at what rate data must be
collected in order to properly reconstruct the signal of
interest). Passive systems have the advantage that they do
not need to be powered; however, they have the limitation that
external equipment is needed to interrogate their signals, and it
can be difficult to add multiple channels.72,73 Active systems
tend to be larger due to the battery and are limited by their
battery life. Both systems face the challenge of transmission
efficiency through body tissue.
Sampling rate is important to consider due to the significant

trade-off between power consumption and sampling rate (i.e.,
sampling at higher rates will burn more power). Furthermore,
radiofrequency (RF) transmission can consume large amounts
of power, though this can be mitigated with intermittent
sampling and the use of lower power modes of operation in
between sampling or data transmission periods. The sampling
consideration is generally clinically driven depending on the
biological signals being investigated. Finally, the questions of
where to store the data and whether to transmit it in real time
are both clinically and technically driven.
Real-time data transmission can be very attractive in clinical

situations where rapid intervention may be needed (i.e., in
localizing major bleeding), but it requires a compact and
efficient RF system. The United States Federal Communica-
tions Commission has specified the Medical Device Radio-
communications Service lying approximately between 401 and
457 MHz. Thus, this frequency band is approved specifically
for communicating with implantable medical devices.74 Several
of the commercial video endoscopy capsules are capable of
real-time data transmission to a vest that the patient wears.
However, the use of other commercial communications
frequencies have been utilized to interface with ingestible
sensors. Compact antenna designs for commonly used
frequencies (i.e., 433 MHz and 2.4 GHz) can be a challenge
because, in terms of efficiency, the optimal antenna size is one-
half the wavelength for a given transmission frequency, often
making the antenna much larger than the system. Higher
frequencies are therefore desirable for compact systems
because of the potentially reduced system size. However,
there are several additional trade-offs to consider. First, the
selected frequency should ideally be associated with a
commonly used signal band to allow the design to take
advantage of existing transmitter and receiver technologies.
Second, the absorbance of water differs at different frequencies.
For example, water has a high absorbance at 2.4 GHz, the
frequency for Bluetooth data transmission, making this
frequency somewhat less desirable. In one case, the optimal
antenna design for miniaturized capsule systems was
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investigated as well as tested in several phantoms that imitate
live tissue.75 Local storage can be performed reliably using a
variety of available compact memory integrated circuits (ICs)
but requires recovery of the capsule for data analysis and
cannot provide real-time information.
The STORM Lab Open Source Architecture for Capsules

(SMAC) is an open source platform that integrates several
different modules that can perform many of the functions listed
above, including sensor interface electronics and wireless data
transmission. The modules can be connected using connectors
that plug into a flexible interconnect. The entire system offers a
starting place for capsule design.76,77

Mechanical actuator design is necessary for applications that
require placement of sampling and delivery modules at
targeted locations, especially for those that require close
proximity to the epithelium interface, where a high
concentration of biomolecules/microbiome activities can be
found with high therapeutic absorption efficacy.78 An effective
actuation design needs sufficient displacements and forces to
the local geometric and peristaltic demands. Additionally, the
effects of food and GI liquid must be considered as well.
Specifically, the stomach offers more opportunities for the
actuation design as it is relatively larger and easier to access6

compared to the small intestine and colon at the lower GI
tract. Peristaltic contractions occur in wave patterns traveling
down short lengths of the GI tract from one section to the
next. The measured small intestine peristaltic contact pressure,
contraction pressure, and propagation speed are of 0.29 kPa,
1.08 kPa, and 0.08−2 cm/s, respectively.79−83 A preferable
actuation design targeting the lower GI tract should have a
small form factor and reduced power consumption or a passive
mechanism. Commonly used actuators include precompressed
springs84−87 and flexures,88,89 balloons,90,91 and magnets.92−94

A key consideration from both an engineering and medical
perspective are the materials requirements to meet both the
specifications of the system as well as the stringent
biocompatibility requirements for medical devices. Materials
to be used must be tested for toxicity, genotoxicity, and
carcinogenicity, among other concerns.95 In addition, the
packaging materials need to meet the requirements of the
device, including adequate sealing of components, protection
from corrosive GI contents, and proper electrical insulation of
components to protect both the patient and the system. In
addition, electronics and other components may dissipate heat,
which could cause the temperature of the capsule itself to rise.
Proper thermal management is important to ensure that the
capsule temperature does not rise to unsafe levels, which could
cause burns to the GI tract. These are important consid-
erations from the outset of the device development process.
Different manufacturing processes are only compatible with
certain materials, for example. This can be especially true for
chemical processing as it occurs in micro/nanomanufacturing,
where specific material properties (i.e., photo-cross-linking)
may be needed.96

Ultimately, the success of any devices hinges on, first, the
development of relevant design requirements based on a
specific clinical problem that needs to be solved, and then, the
development of a system based on these specifications where
each of the components work cohesively to achieve the desired
goal.

■ COMMERCIALLY AVAILABLE INGESTIBLE
SENSING SYSTEMS

Additional commercially available ingestible diagnostic systems
are available for a variety of purposes; Table 1 provides a
summary of the commercially available devices. Capsule
endoscopy (e.g., PillCam) is mentioned above and has been
extensively covered in previous reviews and, therefore, will not
be focused on here.48,101−103

During physiology experiments or work/competition in
extreme environments (among others), it can be desirable to
easily measure a person’s core body temperature. This is to
ensure that they are not becoming hypo/hyperthermic. Using
an ingestible sensor, these values can readily be obtained
compared to the traditional methods (i.e., rectal thermometer),
providing a more desirable method for patients/participants.
Two examples are the CorTemp, made by HQinc (Palmetto,
FL) and the VitalSense Jonah capsule, made by Phillips
(Amsterdam, Netherlands). These pills can potentially be used
for noninvasive core temperature monitoring in a variety of
settings where individuals may be working or competing in
athletic events.104−107

The Proteus Discover, produced by Proteus Digital Health
(Redwood City, CA), addresses the burdensome problem of
medication compliance. Fewer than 50% of patients take their
medication every day or as directed.108−111 This is a major
issue as chronic diseases, which often require daily medication
use for adequate management, are becoming more prevalent.
Specifically, noncompliance with medication is estimated to
cost the US healthcare system $289 billion every year.71

Proteus uses a microfabricated device that can be inserted into
a conventional medication capsule during manufacturing.
When the pill with the Proteus sensor reaches the stomach,
the metal layers on the surface of the microfabricated chip
react with stomach acid and produce a voltage through
electrochemical reactions. The voltage is used to power a
CMOS circuit, which transmits a unique code to an external
patch, indicating that the pill has been ingested. The signal
transmission is accomplished by conduction of the current
generated by the pill through the tissue of the body. The patch
then relays the information to a smartphone or tablet.71

There are also commercial capsule systems that are capable
of measuring specific physiological parameters. The SmartPill,
made by Medtronic (Minneapolis, MN), can measure pH,
temperature, and pressure from within the GI tract, though it
has mainly been used to measure transit time in different
regions of the gut.99 Prolonged esophageal pH monitoring can
be useful in the diagnosis of GERD and in deciding whether
additional treatment or surgery is necessary.6 The Bravo
Capsule, also made by Medtronic, is attached endoscopically
with the assistance of vacuum suction to the esophageal wall
and is held into place using a steel pin deployed from the
capsule. It is capable of extended esophageal pH monitoring
toward obtaining a better understanding of reflux symp-
toms.112−114 Both devices are for use in the upper GI tract and
are aimed at improving chronic disease management.
A capsule system has also been commercialized to treat

patients who suffer from chronic constipation. The Vibrant
capsule (Vibrant, Ltd., Hakochav, Yokneam, Israel) uses
vibration to induce peristalsis in the intestine to allow material
to continue moving through the GI tract, thereby relieving
constipation; it is currently undergoing clinical trials. The
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capsule can receive data from an external base unit (also made
by Vibrant) which is able to activate the capsule.115

The last example of a commercially available capsule system
we discuss here is the IntelliSite Capsule (Casper Associates,
Sanford, NC). The IntelliSite is meant to deliver pharmaceut-
icals under development to specific areas of the GI tract for the
purpose of studying their absorption and distribution. The
capsule is controlled via a radiofrequency link and when the
desired location with the GI tract is reached, an RF signal
actuates a spring-loaded mechanism to release the contents of
a reservoir within the capsule. The IntelliSite capsule is meant
more as a research and development tool to tailor drug delivery
rather than a clinical treatment.98

Thus, it can be seen that although commercialized devices
are available for a few indications, they are limited in their
ability to provide the kind of information that is necessary to
address all the unmet needs described in Opportunities for
Ingestible Devices. For example, there are no currently
available systems that can screen for specific molecules or
compounds within the GI tract. Furthermore, there are few
examples of active systems that are able to both sense an
abnormality, such as a lesion, and then take action to intervene.
These active systems have the potential to intervene in areas of
the GI tract that are beyond the reach of traditional endoscopic
techniques. A full understanding of the medical problem/need
is a key step in delivering a usable device to the clinic, but
present devices have not yet taken advantage of the
transformative advances made in electronics, sensors, pack-
aging, powering, and systems integration tools. A key
consideration in this front is the fabrication and packaging
methods that make the system integration and assembly
possible.

■ INGESTIBLE SENSORS
Single sensor devices are a class of ingestible diagnostics that
can come in many forms and can perform a variety of
functions. They are distinct from the commercialized capsule
systems presented previously as well as the capsule systems
under development that are presented below in that they are
sensors with little electronics integration and are not fully
implemented systems capable of data processing and storage.
However, there is some overlap between the single sensors and
the capsule systems. The distinction made here is that the
single sensors only perform one function (i.e., magnetic
tracking), regardless of shape. Nonetheless, these systems are
useful because of their simplicity in comparison to capsule
systems and can offer specific advantages, such as being
biodegradable.
Edible devices fabricated from food-based materials

represent an interesting class of sensors for ingestible
applications.125,126 Transforming food materials into elec-
tronics is a field unto itself. In some cases, edible materials can
also be used as a biomaterials interface with traditional
electronics; for example, films made from gelatin over
impedance sensors have been used to sense pancreatic
enzymes such as trypsin.127 Additionally, preliminary trials
with composite films made from triglycerides and glycerol have
indicated that these films will dissolve in response to varying
concentrations of duodenal contents such as pancreatic lipase
and bile salts via hydrolysis and emulsification reactions,
respectively. The deposition of these films over MEMS
capacitance sensors and the resulting change in capacitance
in response to enzymatic film removal is a method ofT
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quantifying the concentration of these enzymes.128 Current
research in this area has been reviewed in several recent
articles.129,130 Items ranging from discrete electrical compo-
nents to piezoelectric components, such as microphones for
listening to bowel sounds, have been constructed using edible
materials.130 An additional class of sensors, made from
ingestible materials but directed toward detecting food
spoilage, have been demonstrated using silk proteins.131

These sensors are of interest because of the applicability of
the same materials for use in other ingestible applications.
Along those lines, Kim et al. demonstrated a fully edible
electrochemical sensor that can be placed on a variety of foods.
The sensor consists of activated conductive carbon held
together using an oil binder.132

Along similar lines, Ruiz-Valdepeñas Montiel et al.
developed an ingestible electrochemical glucose sensor that is
targeted to regions of interest within the GI tract via pH-
responsive polymer coatings. The electrode for the electro-
chemical sensor is made from edible carbon and olive oil. The
investigators were able to demonstrate glucose sensing in the
2−10 mM range in simulated fluids with a range of pH values
using a benchtop potentiostat and chronoamperometry
measurements for this initial investigation. Though, the
response of the sensor was somewhat pH-dependent.61

Several different sensing systems have been developed to
address GI motility, including pill-shaped sensor magnets,
which can be tracked using external magnetic sensors.64,133,134

In assessing GI motility, it is also desirable to measure the
pressures that develop within different sections of the

alimentary canal. Microelectromechanical systems (MEMS)
based pressure sensors have been developed for a variety of
applications, and some have even been commercialized for
implantable applications, though not for the GI tract in this
particular case (CardioMEMS HF Sensor, Abbott Medical,
Abbott Park, IL). Passive RLC circuits are a commonly used
topology which can be used to construct pressure sensors. In
these circuits, the measured pressure alters the capacitance of
the circuit, often by changing the distance between the plates/
fingers of a capacitor, and this, in turn, changes the resonant
frequency of the circuit.72,73 Annese et al. demonstrated a
sensor based on this principle which was fabricated on a
biodegradable polycaprolactone (PCL) substrate.135

The deformation of a piezoelectric material can also be used
to detect pressure. When piezoelectric material deforms, a
change in the voltage across the device can be measured.
Dagdevirin et al. developed a flexible pressure sensor based on
this principle using lead zirconate titanate (PZT) on a Kapton
substrate.136 The device was fabricated by a multilayer
deposition and etch process, where the metal and piezoelectric
layers for the sensor are deposited on a silicon wafer and then
coated with gold. The top gold layer and the lower metal layers
are then wet etched. The entire structure is transferred onto a
spin-coated polymer film using a PDMS stamp and then
subsequently sealed.55 This represents a wafer-level system
integration process which is in contrast to the discrete
component integration that will be discussed later. Although
this device is implantable within the stomach, it requires

Figure 3. Examples of capsule systems from the published literature: (a) Image of a capsule using live bacteria to detect hemoglobin within the GI
tract (Reprinted with permission from ref 59. Copyright 2018 Science).59 (b) Ingestible capsule with an inflatable balloon for tamponade of GI
hemorrhage (Reprinted with permission from ref 90. Copyright 2016 IEEE).90 (c) Bioinspired, self-orienting applicator for active insulin delivery
(Reprinted with permission from ref 89. Copyright 2019 Science).89 (d) Ingestible capsule system integrating a MEMS pH sensor and an ASIC
(Reprinted with permission from ref 63. Copyright 2017 IEEE).63 (e) Smart capsule for targeted GI tract drug delivery (Reprinted with permission
from ref 163. Copyright 2015 IEEE).163 (f) Ingestible capsule capable of releasing a retrievable microgripper for tissue biopsy (Reprinted with
permission from ref 157. Copyright 2013 IEEE).157 (g) Passive folded microneedle drug delivery device that is released from the capsule by the
dissolution of an enteric coating and the release of a compressed spring (Reprinted with permission from ref 164. Copyright 2019 Nature
Medicine).164 (h) Magnetic actuation mechanism for a capsule needle biopsy device (Reprinted with permission from ref 94. Copyright 2017
IEEE).94 (i) Nickel-plated torsional spring actuated mechanism for obtaining biopsies in an endoscopic capsule (Reprinted with permission from
ref 159. Copyright 2008 Journal of Micromechanics and Microengineering).159 (j) Ingestible electrochemical sensing system encapsulated in PEEK
(Reprinted with permission from ref 58. Copyright 2015 Elsevier).58
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connection to external electronics using a percutaneous
endoscopic gastrostomy (PEG) tube.
As described above, pH measurement within the GI tract is

important diagnostically, particularly the pH value in the
esophagus and stomach where high acidity from the stomach
can cause damage to other organs, such as the esophagus. An
example of a single chip pH sensor that was packaged for
ingestible sensors was developed by Zhu et al., who
demonstrated a system on a chip (SoC) with a wireless
transceiver.137 The pH sensor was implemented as a ion
sensitive field effect transistor (ISFET), where the gate of a
metal oxide semiconductor field effect transistor (MOSFET) is
coated with a special membrane to make it sensitive to only
hydrogen ions, and thus pH.66,137

■ INGESTIBLE CAPSULE SYSTEMS UNDER
DEVELOPMENT

Considerable research and development work has been
devoted to the creation of capsule sensing systems with
capabilities beyond that which are already commercially
available.48,138 These systems generally consist of a sensing
apparatus which is operated by a small form factor circuit/
electronic back end. These capsules can transmit data
wirelessly or store data onboard for later analysis. Here, we
make the distinction between capsule systems and the
ingestible sensors presented in the previous section by noting
that the capsules are true integrated systems with sensors,
control systems, data storage/transmission, and a power
source. While the ingestible sensors are simpler, consisting of
devices that can sense a single analyte, they are not as robust in
terms of data processing and storage as the ingestible capsule
systems. Figure 3 and Table 2 contain images and a summary
of the devices discussed in this section, respectively.
GI Indwelling Systems. A first application of capsule

systems that ties into the previous section is the development
of devices capable of immobilizing a biosensor at a specific
location within the GI tract. In work by Xie et al., a spring-
loaded fixture actuated by a vacuum chamber is used to attach
a sensor to the gut wall. The system is created using 3D
printed parts. The melting of wax at the target location within
the GI tract causes the seal of the integrated vacuum/low-
pressure chamber to break, drawing tissue into an orifice of the
device and releasing a spring-loaded mechanism to propel the
sensor to be placed onto the wall of the intestine.84 Similarly,
Quaglia et al. developed a spring-loaded mechanism to release
an adhesive patch from an ingestible capsule.85 The same
group also developed a capsule that could release a clip which
one could envision being used for a variety of purposes,
including sensor attachment and hemorrhage control.86

Balloon inflation has been employed in medical device
applications as a relatively simple way to provide actuation for
an ingestible capsule.139−142 Balloons have the advantage that
they can be stored compactly within the capsule system before
deployment. The work by Nakamura et al. demonstrated
balloon-based actuation utilizing a sodium bicarbonate
reaction with stomach acid to inflate a balloon from a capsule
system to allow the capsule to temporarily reside in the
stomach. A gelatin plug is designed in the system which will
liquefy at body temperature to expose an onboard sodium
bicarbonate reservoir to gastric acid. Subsequently, an
electrolysis reaction creates gas pressure that drives a needle
into the silicone balloon causing it to deflate for a retrieval
process.91 This work also used a flexible PCB to integrate a

flexible antenna in the device,143 providing an innovative
packaging technique suitable for the stringent system require-
ment. Additional actuation devices/mechanisms have been
incorporated in ingestible capsule systems, including the design
of mechanical legs, the use of compressed air, and the
application of an external magnetic field to steer the system.144

GI Bleeding. One potential use of capsule systems is to
detect traces of blood as a result of GI hemorrhaging. GI
bleeding is of particular interest because, due to the large
surface area of the GI tract, it can be difficult to locate the
source using conventional endoscopy.145 In one example of a
capsule developed for this application, Nemiroski et al.
constructed a swallowable device with an integrated fluor-
ometer to enable fluorescent detection of GI bleeding. One
potential trade-off with this approach is that the fluorescent
dye must be injected into the patient’s bloodstream to allow
for the detection scheme to function. This capsule is also
compatible with Zigbee communication (a low data rate 2.4
GHz transmission technology), allowing it to transmit data
wirelessly.146 This is a key consideration when trying to
perform a time critical intervention on a life-threatening
condition.
A second optically based capsule for GI bleeding was

developed by Qiao et al. and uses an optical sensor and an
absorptive film to detect hemoglobin. The hemoglobin binds
to and dyes the absorptive film, leading to signal detection.147

This wireless capsule autonomously detects bleeding and then
transmits an alarm signal in response. An additional fluorescent
approach uses specifically engineered bacteria that fluoresce in
the presence of hemoglobin. An onboard fluorescence detector
is used to read the signal from the bacteria instead of an
absorptive film, where the data is again transmitted wirelessly.
This approach was also used to detect thiosulfate (an
inflammatory biomarker) as well as acyl-homoserine lactone
(a marker of gut microbiome activity).59 A semipermeable
membrane is used to prevent the bacteria within the capsule
from being released into the gut. Additional work has also been
performed on algorithms to detect GI bleeding using capsule
endoscopy.148−150

A third optical bleeding detection approach uses light
emitting diodes (LEDs) to compare the transmission of light at
two different wavelengths (415 and 720 nm) and to then use
this ratio to properly identify bleeding. Increased absorption at
415 nm indicates the presence of blood. This system was
demonstrated using a wireless capsule operating at 433
MHz.151

A natural extension of automatic lesion detection is
identification followed by intervention. Leung et al. developed
a wireless capsule that is capable of both transmitting recorded
images and then analyzing the data using an onboard
microcontroller to detect bleeding lesions. A set of training
images was used to train an algorithm that could run on the
microcontroller within the device to identify bleeding regions
within the GI tract. The capsule goes one step further by
inflating a balloon, achieved by combining two chemicals with
a linear actuator, to tamponade the bleeding.90 Several of the
hemorrhage detection concepts above were tested in simulated
tissue models in the lab but still need further testing for full
characterization in animal models or humans.

Small Bowel Cancer. Tumors, especially those of the small
bowel, can be difficult to screen for using conventional
endoscopy.47 One method of lesion detection, similar to those
for bleeding, would be to fluorescently tag the cancer cells,
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then detect the fluorescent signal. This entails that, before
ingesting the capsule, the patient would need to swallow a
solution containing fluorescent antibodies that would attach to
the cancer cells. This approach was demonstrated by
Demosthenous et al., who developed a near-infrared
fluorometer on a capsule platform to detect indocyanine
green-labeled cancer cells. The capsule and electronics are
assembled on PCBs with a flexible interconnect between
different boards within the device. Using the onboard
accelerometers, the capsule adjusts the sampling rate for data
collection from the photodiode to account for the rate at which
the capsule moves through the GI tract.60,152 This work is
specifically aimed at detecting small intestinal tumors at an
early stage, and the authors report that the demonstrated
method, where the capsule detects whether the signal from the
dye exceeds a specific threshold, removes the necessity of
analyzing hours of video (as would be the case with
conventional capsule endoscopy).
Biopsy. Several other techniques have been developed to

biopsy limited-access GI regions or to perform tissue diagnosis
without having to extract tissue samples that must be sent to a
lab. Along these lines, Gora et al. developed a tethered confocal
microscopy system that could be used for GI tract
diagnostics.153 Although some could argue that this work
does not represent a true capsule system, it is worth
mentioning because of the streamlines that the system adds
to the diagnostic process, as it avoids traditional sample
removal for conventional microscopy. There are several other
examples of tethered capsuled endoscopy, others of which can
be found in refs 154−156.
Capsule systems have also been demonstrated that use

microgrippers for tissue extraction and retrieval.157 The entire
system consists of a magnetically actuated capsule and can be
induced to release a payload using the change in strength on an
applied external magnetic field. In this work, the payload was
self-folding microgrippers.157 The microgrippers were fab-
ricated on a silicon wafer on top of a poly(vinyl alcohol)
release layer; the gripper hinges contain chromium and copper
covered in positive photoresist. The fingers of the grippers
were made using electrodeposited nickel and gold. Heating of
the photoresist within the hinges above 37 °C causes the
grippers to close. A detailed description of the grippers and
their fabrication can be found in ref 158. In their integrated
capsule system, a polyurethane post structure impregnated
with a silicone oil adheres to the microgrippers for retrieval.157

Several additional methods have been developed for biopsy
using a swallowable capsule. Kong et al. developed a spring-
loaded biopsy device that is held in place using a paraffin block.
Heating the paraffin releases a torsional spring, launching a
cutting device into the lesion to perform a biopsy. The heating
mechanism is triggered externally from the capsule.87 Also,
Park et al. demonstrated a torsional spring plated from nickel
using a PMMA mold. The spring is loaded into the capsule and
then thermally triggered by melting a polymer wire. A barbed
fixture on the end of the torsional spring grabs tissue when the
spring is released. The action of the torsional spring is able to
both release and retrieve the barbed fixture.159 External
magnets can also be used to actuate a rotating cutting device
to obtain biopsy samples.92−94

Many of the sensors that have been developed for screening
GI tract diseases are very useful, but it is important to note that
histological examination of the tissue is often required to reach

a diagnosis, even after the screening test has detected a
concerning lesion.

Physiological Monitoring and pH. As mentioned above
with some of the ingestible technologies, to measure body
temperature, monitoring and collection of physiological data
are highly desirable in many different healthcare or field
settings. Traverso et al. developed a wireless capsule for
measuring heart and respiratory rate which transmits data in
the 433 MHz range. The capsule, called the EnteroPhone
(MIT Lincoln Laboratories/Harvard Medical School)160 uses
tiny electret microphones and a specifically designed algorithm
to detect the signals from heart rate and respiration, tested
within a porcine model.161 There are various other capsule
systems that have been developed for physiological monitoring
incorporating multiple sensor types including those for
detecting pH and temperature.63,162 Of note, several of these
use analog ICs to reduce the footprint of the readout circuitry.
Additionally, a GI tract physiological monitoring capsule,

developed by Arefin et al., features a flexible PCBs fabricated
on polyimide with flexible interconnects linking a series of
boards containing the necessary electronics for facile assembly.
An antenna that can be folded is fabricated on a flexible
substrate to reduce the footprint as well.63 This saves space
while simultaneously allowing for efficient wireless trans-
mission. The resulting form factor for the completed capsule
was 28 mm long by 13 mm in diameter.63

A key consideration in any of these fabrication processes is
the integration of biocompatible materials. Johannessen et al.
examined the biocompatibility of a fabricated wireless capsule.
The capsule that was tested consisted of a custom application-
specific circuit and a pH-sensitive ISFET. The capsule
containing the circuit, sensor, and batteries was encapsulated
in an epoxy resin. Testing was completed in simulated gastric
juice (a low-pH ionic solution), simulated intestinal juice
(near-neutral pH solution containing ions and small intestine
enzymes), and then simulated food-containing solutions. The
food-containing solutions were similar to the simulated
gastric/intestinal fluids but had pet food or milkshake solution
added to them.162 The same investigators also incorporated a
permanent magnet into the capsule system for location
tracking using magnetoresistive sensors and were able to
perform measurements in the porcine GI tract (in a fresh
carcass not a live animal) with data transmission at 433
MHz.165

Additional examples of innovative fabrication techniques for
physiological monitoring transducers have involved the
development of miniaturized pH sensors for ingestible
systems.166 In one example, Shoa et al. used a reaction
between antimony and hydrogen ions to create an electrical
current which correlates with solution pH. The sensor is
fabricated by solidifying metal powders in a glass tube. The
silver/silver chloride reference electrode necessary for electro-
chemical measurements is fabricated again using metal powder,
then sealed with paraffin wax. A wireless capsule containing a
similar antimony-based pH sensor to the one above has been
investigated for esophageal pH monitoring with the addition of
magnetic holding (via external magnets) to keep the capsule in
place.167

Drug Delivery. Drug delivery directly into the GI tract may
be desirable for several reasons. First, certain drugs, particularly
those based on a particular protein structure (insulin is an
example of a peptide), cannot generally be administered orally
because proteases in the GI tract will break down the proteins
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into individual amino acids, preventing the drug from ever
taking effect. Using a swallowable device to inject the drug
directly into the GI vasculature may be one method to replace
repeated injections or lengthy infusions. In addition, several GI
tract diseases, particularly IBD, often require systemic
therapies, which can carry considerable side effects including
increased susceptibility to infections and cancers.168,169 Local
administration of therapeutic agents at affected locations
within the bowel may be one method to reduce the need for
systemic treatment.
GI capsule systems integrating both sensors and actuators

have been investigated for GI drug release applications. These
have the potential advantage of detecting certain conditions or
locations in the GI tract, with the added functionality of
releasing a drug.163,170 Some of these technologies are
advanced enough that they are beginning to be studied in
clinical trials. A capsule using the GI tract pH profile to bypass
the hostile gastric and proximal small bowel environment has
demonstrated controlled drug delivery functionality suitable
for nanomedicine.170 In a more system-development-related
investigation, Wuyang et al. demonstrated a magnetic-thermal
release mechanism where an external magnetic field closes a
reed switch, heating and melting a band which holds the drug
reservoir closed. When the band melts, the capsule opens,
releasing the drug it contains.163 Spring loading is another
actuation mechanism that has been investigated recently.
Abramson et al. developed a spring-loaded folded structure
that is held in place by an enteric coating. When the coating
dissolves, the compressed spring propels the folded hierarchical
microneedle structure out of its container to release its
contents into the wall of the GI tract.164 This group also
developed an ingestible self-orienting system and demon-
strated in vivo oral delivery of insulin with animal studies.89

The spring-loaded device has the advantage that it is
completely passive and does not require additional onboard
power to operate.
These capsule systems employing sensing and actuation are

significant as they entail a complete closed-loop device for
targeted/on-demand operations, where sensors detect the
release location and then trigger actuators to release the drug.
Along the lines of complete microrobot systems, Woods et al.
investigated capsule systems for drug delivery applications that
include micromotors and computerized numerical control
(CNC) machined gears. The investigators developed a
microneedle injection system and also examined issues such
as the possibility for the capsule to resist peristalsis.171−173 The
developed system was also investigating microsurgery using the
gear-driven capsule.174

Along the lines of positioning, investigators have demon-
strated a magnetic positioning system for a drug delivery
capsule.175 A magnetic actuation mechanism, similar to one
discussed above, for the biopsy capsule has also been
investigated for drug delivery. In this system, an external
magnetic field is used to compress the capsule lengthwise,
compressing a drug reservoir releasing the drug.176 Additional
investigations have used ultrasonic transducers mounted within
an ingestible capsule to drive drugs into certain regions of the
wall of the GI tract.177

Additional Examples. Additional sensor types have been
included in capsule systems for a variety of additional
applications. Capacitive micromachined ultrasonic transducer
arrays (CMUT) have been employed in wireless capsules for
ultrasound imaging.178 Lay et al. provides further discussion of

ultrasound systems for capsule endoscopy as well as multi-
modal sensing within capsule systems.179 Thermoresistive and
electrochemical sensors have also been utilized.180 Kalantar-
Zadeh et al. reported a human trial of a GI gas sensing capsule,
capable of measuring oxygen, hydrogen, and carbon dioxide
levels.181 These sensors were used to look at bacterial
fermentation of dietary fiber within the gut microbiome.
Further, Berean et al. report the measurement of hydrogen
production in the gut for detecting small intestinal bacterial
overgrowth.182 An additional potential application of gas
sensors may be for cancer detection with an initial
investigation using trained dogs to detect odors suggestive of
cancer.183

Electrochemical sensing, on the other hand, has been widely
used for a variety of potential applications. McCaffrey et al.
developed an electrochemical sensing capsule which transmits
data wirelessly at 433 MHz.58 Their work describes the system
development and construction using commercially available
components coupled to an “E-tongue” electrochemical sensor.
The entire system is packaged as a series of circular PCBs
connected via a flexible interconnect, encapsulated within a
polyether ether ketone (PEEK) shell.58

As discussed above, the standard of care for colon cancer
screening is colonoscopy, but this requires swallowing and then
defecating a large amount of bowel prep solution to clean any
material off the walls of the colon. This bowel prep process is a
deterrent to patients undergoing screening. Kimchy et al.
describes the operation of a colon cancer screening capsule
that uses radiofrequency positioning and an X-ray-based
imaging to map the contours of the bowel wall without the
need for the patient to take any bowel prep. The patient does
need to swallow small amounts of iodine-based contrast for the
capsule to work. If a lesion is detected, then it can be
investigated further using colonoscopy or appropriate imag-
ing.184

Having a capsule that operates effectively within different
regions of the GI tract is important given the variety of diseases
that affect different parts of the gut and the diverse physiology
of different regions. Along those lines, Carta et al. developed a
capsule for operation in the stomach that includes power
transfer via electromagnetic induction and contains four
propellers for locomotion.186

3D printing is an exciting technique, which is being
increasingly utilized to overcome materials and manufacturing
challenges.187−189 Various technologies such as fused deposi-
tion modeling (FDM) or stereolithography (SLA) are
increasingly employing materials that achieve biocompatibility
requirements, thereby promoting their use for creating
structural components in medical devices. Recent work
suggests that this utility extends to capsule devices as well.190

In our recent work, 3D-printed capsules are used to package
sensors that verify sampling of simulated GI environments.
This is achieved by leveraging pH-soluble coatings, specifically,
varying formulations of Eudragit (E PO, L100, and S100)
commonly used in pharmaceuticals and drug delivery for
targeting specific GI regions.191,192 Demonstrated to be
effective when coated over 3D-printed capsules, efforts have
continued in testing these polymer coatings, both with varying
thicknesses and when combined and subsequently exposed to
dynamic pH sequences. In this work, coating dissolution was
detected using a capacitive sensor contained within a
capsule.193 The results indicate the potential for control over
sensor exposure to surrounding environmental cues, i.e., pH,
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using these coatings as a passive method for targeting,
therefore enabling more specific onboard sensing modalities
with reduced interference from nonspecific regions as well as
more efficient power distribution to additional tasks.

■ DISCUSSION AND FUTURE OUTLOOK
The current commercialized ingestible sensing technologies do
not extend beyond imaging and the measurement of a few
physiological parameters, such as temperature and pH.
Ingestible sensing systems have a potential well beyond these
few applications. One point that does deserve mention is that
the use of any medical technology/medical intervention is not
without risk. For example, capsule endoscopy use has
determined that capsule systems hold a nontrivial risk of
bowel obstruction, which is as high as 2% in the published
literature.194,195 Capsule retention, where the capsule does not
pass through the GI tract but is retained somewhere in the
path, represents an additional risk. Further complications
include bowel perforation, infection, and device failure,
potentially leading to the release of harmful materials into
the alimentary canal, among others.196,197 The key to the
further successful translation of swallowable sensing systems is
the identification of medical conditions where the benefit of
intervention with a swallowable system outweighs the risk.
The current state-of-the-art commercialized systems do not

include any kind of biochemical marker or tissue diagnosis.
Systems under development have examined some of these
types of capabilities, including in the area of bleeding detection
and biopsy, but more work is needed to translate these
technologies. With the advent of personalized diagnosis and
personalized medicine (for example, treating a patient’s tumor
based on a specific biomarker that it expresses), platform
sensing technologies are needed that can identify these
markers and match patients to appropriately tailored
interventions.
Two major hurdles for ingestible sensing systems are (1) the

identification of relevant biomarkers that can be detected in
the ingestible setting (noting that they may be different than
those that are identified in stool samples for example) and (2)
the development of sensing systems that are able to filter out
and amplify small amounts of analyte from all of the different
material that is normally found in the human GI tract. In
addition, the sensitivity of the ingestible sensing systems as
well as their overall size and battery life will all need to be
addressed so that they can function as needed. The literature
contains numerous examples of relevant back-end platforms
(i.e., power electronics, RF transmitters, microcontroller
systems and packaging), but a great deal of work is needed
on developing front-end sensing technologies for biomarker
identification.
From a healthcare systems perspective, low-cost devices

based on batch fabricated sensors and electronics could allow
one to take full advantage of the developments in
miniaturization and integration that have occurred over the
past several decades and could allow for swallowable sensing
technologies to be developed that are lower in cost compared
to other technologies. More importantly, further development
of ingestible technologies has the potential to (1) reduce the
cost of current screening methods by greatly reducing labor
costs and (2) provide new screening capabilities made possible
by the system integration of microscale sensors with
application specific circuits, made possible by state-of-the-art
microelectronics technologies.198

In addition to autonomous operation within the GI tract,
one can envision the same concept applied to other organ
systems such as the central nervous system (CNS) or the
circulatory system. For example, invasive procedures requiring
large doses of radiation can be required to diagnose arterial
blockages. Autonomous systems that can screen for and
potentially even treat these conditions would further reduce
associated procedural and hospital time as well as labor costs
and could potentially improve screening availability on a
population basis. The GI tract is an effective stepping stone
toward the development of devices that can operate in other
regions of the body due to its more forgiving nature. For
example, an arterial blockage can begin to cause life/limb
threatening ischemia within minutes, while a GI tract blockage
can occur over hours or even days before it will be life-
threatening, increasing the window of time for correc-
tion.6,194,199 Additionally, an arterial injury leading to bleeding
can kill in under an hour, while a GI tract perforation can be
life-threatening but can be tolerated for several hours allowing
time for appropriate intervention.6

A key component to successfully translating the promising
results reviewed above is identifying the relevant clinical
problem and then weighing the following: (1) the risks/benefit
to the patient and (2) the added efficiency or burden on the
healthcare system. Devices that are most likely to translate
effectively are the ones that provide multiple randomized trial-
proven benefits to the patient or improved healthcare decision-
making without greatly increasing the risks or costs. However,
it should also be noted that FDA requirements for randomized
controlled trials for devices are different than those for
pharmacological agents and, in many cases, also simpler.
Identifying diseases that are difficult to screen, and for which a
robust system can be developed to improve screening for that
matter, is an excellent place to start because catching deadly
diseases at earlier stages could hold tremendous potential
benefits for patients. Furthermore, there are a myriad of GI
pathologies that require frequent surveillance to either assess
treatment efficacy or assess for disease progression. Ingestible
technologies are not at the point where they can really be used
for these surveillance applications, but getting ingestibles to
this point could help to make these screenings less
burdensome and disruptive for patients.
As mentioned above, some disease processes that require

frequent screenings, currently performed by endoscopy are
Barrett’s esophagus and inflammatory bowel disease, in
particular, ulcerative colitis. The aim of the screening
performed in these conditions is to detect precancerous
lesions before they progress to become life-threatening. A
swallowable system that could identify and diagnose neoplastic
lesions without the need for sedation, for example, could
reduce the cost to both the patient and the healthcare system.
However, designing a single system to address these complex

medical problems is a formidable task. A possible middle
ground, allowing earlier adoption of ingestible technology
while still addressing a medically relevant problem, is to
identify medical settings where a screening test in the form of
an ingestible capsule would be useful to identify patients that
would then benefit from a screening endoscopy. For example,
the current screening guidelines for colon cancer recommend
that a screening colonoscopy be performed starting at either
age 45 or 50 (the current guidelines differ between
agencies).200,201 This may not be necessary for all patients. A
capsule that could first screen for concerning lesions could
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then identify patients who actually need to undergo
colonoscopy.
An additional setting where these minimally invasive

technologies could potentially find first applications are in
resource-poor environments where endoscopy or other
procedures may not be possible because of a lack of equipment
or providers. A swallowable capsule that could identify GI
bleeding, precancerous lesions, or additional interventions
requiring more complex facilities could then inform which
patients need to be transported to higher levels of care.
There is an opportunity for lower-cost, autonomous sensing

systems that collect data in the outpatient setting and do not
require higher level facilities for equipment or sedation. These
sensing, and potentially interventional, systems should be able
to both detect and transmit data as well as collect and analyze
samples in real time within the GI tract. Such systems would
have use in both medical diagnostics as well as better
understanding the complex systems biology involved with
diseases.
One of the key issues in global healthcare systems is to

identify ways to deliver ever-improving health outcomes
without greatly increasing the costs of care. Ingestible sensing
technologies that rely on batch fabricated MEMS and
microsystems technologies and that do not require constant
user direction/intervention for safe operation raise the
potential to reduce cost by leveraging the low cost per unit
for batch manufactured devices and the potential for these
systems to operate autonomously or semiautonomously.
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