MSAL Research on Ingestible Pill Featured on Nano Magazine News

Researchers in the University of Maryland's MEMS Sensors and Actuators Laboratory (MSAL) in the A. James Clark School of Engineering have developed an ingestible capsule with a new packaging technology that can protect its tiny components in the sometimes harsh environment of the GI tract, then dissolve at precise moments and locations needed to deliver drugs, reveal sensors, or carry out other functions.

Their study, published in Microsystems & Nanoengineering, describes how this packaging, called a freestanding region-responsive bilayer (FRRB), can protect the capsule as it navigates the GI tract and performs complex diagnostic and therapeutic tasks like sensing, monitoring, and drug delivery.

"Ingestible capsule devices are the next frontier of medical technology," said bioengineering Ph.D. student Michael Straker, first author of the paper. "The FRRB is a simple yet elegant solution to one of the major challenges of developing these devices. It can be used to develop creative new designs, allowing sensitive actuators and sensors to reach targeted regions of the GI tract unscathed."

Co-authors on the paper include materials science and engineering Ph.D. student Joshua Levy, and electrical and computer engineering Ph.D. Justin Stine, Vivian Borbash '22, research associate Luke Beardslee, and Herbert Rabin Distinguished Chair in Engineering Reza Ghodssi, who directs the MSAL.

More information can be found on Nano Magazine News. (30 - May / 2023)